Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Raina, Jean-Baptiste (Ed.)ABSTRACT Mass mortality of Diadematidae urchins, caused by theDiadema antillarumscuticociliatosis Philaster clade (DScPc),affected the Caribbean in spring 2022 and subsequently spread to the eastern Mediterranean, Red Sea, and western Indian Ocean. A key question around Diadematidae scuticociliatosis (DSc), the disease caused by the scuticociliate, is whether the urchin microbiome varies between scuticociliatosis-affected and grossly normal urchins. Tissue samples from both grossly normal and abnormalDiadema antillarumwere collected in the field during the initial assessment of the DSc causative agent and from an experimental challenge of DScPc culture on aquaculturedD. antillarum. Specimens were analyzed using 16S rRNA gene amplicon sequencing. Additional abnormal urchin samples were collected from the most recent outbreak site in the western Indian Ocean (Réunion Island). At reference (i.e., unaffected by DSc) sites,Kistimonasspp., Propionigeniumspp., andEndozoicomonasspp. were highly represented in amplicon libraries. DSc-affected urchin amplicon libraries had lower taxonomic richness and a greater representation of taxa related toFangia hongkongensisandPsychrobiumspp. Amplicon libraries of urchins experimentally challenged with the DSc pathogen had some shifts in microbial composition, butF. hongkongensiswas not a part of the core bacteria in DSc-challenged specimens. DSc-affectedEchinothrix diademafrom Réunion Island showed a similar high representation ofF. hongkongensisas that seen on CaribbeanD. antillarum. Our results suggest that DSc altersDiadematidaemicrobiomes and thatF. hongkongensismay be a candidate bacterial biomarker for DSc in environmental samples. The mechanism driving microbiome variation in host–pathogen interactions remains to be explored.IMPORTANCEThe mass mortality of Diadematidae urchins due toDiadema antillarumscuticociliatosis (DSc) has had significant ecological impacts, spreading from the Caribbean to the eastern Mediterranean, Red Sea, and western Indian Ocean. This study investigates whether the microbiome of urchins varies between those affected by DSc and those that are not. Using 16S rRNA gene amplicon sequencing, researchers found that DSc-affected urchins had lower taxonomic richness and a greater representation ofFangia hongkongensisandPsychrobiumspp. The findings indicate thatF. hongkongensiscould serve as a bacterial biomarker for DSc in environmental samples, providing a potential tool for early detection and management of the disease. Understanding these microbiome changes is crucial for developing strategies to mitigate the spread and impact of DSc on marine ecosystems.more » « less
-
Stony coral tissue loss disease (SCTLD) was first observed in St. Thomas, U.S. Virgin Islands (USVI) in January 2019. This disease affects at least 20 scleractinian coral species; however, it is not well understood how reef diversity affects its spread or its impacts on reef ecosystems. With a large number of susceptible species, SCTLD may not follow the diversity-disease hypothesis, which proposes that high species diversity is negatively correlated with disease prevalence. Instead, SCTLD may have a higher prevalence and a greater impact on reefs with higher coral diversity. To test this, in 2020 we resampled 54 sites around St. Thomas previously surveyed in 2017 or 2019 by the National Oceanic and Atmospheric Administration National Coral Reef Monitoring Program. These sites represented a variety of species diversity values [categorized into poor (<12 spp. rich.) and rich (≥12 spp. rich.)] in multiple disease zones (Endemic: disease present ≥ 9 months; Epidemic: disease present 2–6 months; Control and Emergent: disease present no disease/<2 months). We hypothesized that, contrary to the diversity-disease hypothesis, sites with high species diversity (as measured by species richness or Simpson’s index) would have higher disease prevalence within the epidemic zone, and that high species diversity sites would have a greater impact from disease within the endemic zone. Results indicated a significant positive relationship between disease prevalence and diversity in the epidemic zone, and a similar trend in the endemic zones. Additionally, a negative relationship was seen between pre-outbreak diversity and loss of diversity and coral cover within the endemic zone. This supports the hypothesis that higher diversity predicts greater disease impact and suggests that SCTLD does not follow the diversity-disease hypothesis. Within the epidemic zone, the species with the highest SCTLD prevalence were Dendrogyra cylindrus , Colpophyllia natans , and Meandrina meandrites , while in the endemic zone, Diploria labyrinthiformis , Pseudodiploria strigosa , Montastraea cavernosa , and Siderastrea siderea had the highest SCTLD prevalence. Understanding the relationship between species diversity and SCTLD will help managers predict the most vulnerable reefs, which should be prioritized within the USVI and greater Caribbean region.more » « less
An official website of the United States government
